Skip to content
May 8, 2019 / apexprecitech


The new saddle setting device for P3-1 top arm is a new one. This is an upgrade over the previous version.

new saddle setting device

This is by far the fastest saddle setting option available for the spinning industry now. In less than 15 seconds the saddle distances of the break draft and finish draft zones are set precisely every time.
Old troublesome method 
Earlier in the manual mode , the maintenance personnel used to collect the saddles from the frame and reset/check for saddle settings in the department room or somewhere near the machine by a group of five to six people. After the completion , the saddles are set in the ring frame. This is usually a full shift job and one frame can be covered in a day.
Apex Saddle Setting Device – the fast forward option
This apex Saddle setting device needs one person (two optional)  alone for a period of 2 to 3 hours to set a full ring frame of 1000 spindles. It is mounted on a mobile trolley and is compact enough to move between the ring frames and allows space for the technician to do the job on the spot.
This device is fitted with integral vernier calipers that are synchronized with the moving jaws of the saddle setting device and give accurate reading of the jaw position within 0.1 mm.
Ease of operation
The speed of seeting possible is because a swinging arm that carries the field settings. The base of the device has a seating arrangement for the saddle. The operator places the saddle on the slot of the base and loosens the screws of the second and third saddles (the first saddle is fixed) . In the whole operation, the top rollers are never removed. This saves a lot of time ! Now the swinging top arm is pressed against the saddle . The semi circular grooves on the swinging arm quickly and easily position the saddles to the required setting in a second. The operator now tightens the screws. This completes the full setting of the saddle. This is just a fifteen second process and is done right near the ring frame by just one person !!!
Setting the field distances
The field distances or the draft zone distances are easily set simply by rotating the setting screw for each field. The set distances can be locked by another screw. The setting distances can be repeatedly got accurately with the rigidly constructed boy and jaws. A device will last a lifetime for a spinning mill.
Operational video
The following video explains the functioning of the device in its entirety.

March 4, 2018 / apexprecitech

Apex Ring Spindle Concentricity Setting Device

An altogether new concept in Ring Spindle Concentricity setting is invented by Apex Precitech . We introduced new devices in this segment earlier also but this has the potential to be loved by spinning technicians instantly.

Apex was the first to establish the possibility of centering when the spindles are NOT ROTATING. A cylindrical sleeve running to the full length of the spindle is inserted onto the spindle. This fit is close and accurate.

A conical sleeve runs over the outer surface of the above sleeve. Its taper can engage with the loosened ring adaptor bringing it instantly into concentricity with the spindle. When the screws of the ring adaptor are tightened, we have set up the ring centering in a time span of 10 to 20 seconds.

The whole process requires no special skills and can be performed by anyone thereby relieving the pressure on the technical staff.

The importance of perfect concentricity of ring and spindle cannot be overemphasized. Correct setting brings down ends breakage rate, optimizes winding tension, increase traveller life and more procuction. It is every technician’s goal to have all spindles in perfect centre with the ring.

Our device can handle millions of centering operations with repeatability. The tapered sleeve positively aligns with the ring and to give more impact to the engagement, a metal weight is provided on top .  A conical pin on top centers the lappet also.  The tapered sleeve is a great feature since it enables one device to be used on many ring diameters. We have designed this device to be usable from 36mm dia to 42 mm dia. The device can be customised to various spindle tapers such as 1: 40 and 1 : 64 etc offered by Laksmi, Rieter etc.


This is a very nominally prized device with big capabilities. We invite the spinning industry to explore its usage.




March 4, 2018 / apexprecitech


Apex Precitech has given one more useful device to the spinner.

The spinner always used to visually check the spindle concentricity .But this is not a simple job. The apindle view is hindered by the top arm, the clearer rollers, and the lappet . Further the area is a cramped one what with the bobbins hanging just in front.

To overcome the problem, Apex Spindle Inspection Device uses a periscope which transmits the image at a convenient distance away from the spindle centre.

The quality of visuals from this device is unimaginable. A checking sleeve normally lesser than the ring diameter by 0.8 mm is inserted into the spindle. The Apex Device is mounted on the beam with its detachable magnet.  Now, it becomes hands free. The ring rail should be positioned to be in line with the top surface of the sleeve. When viewed through the device, the annular groove is between the spindle and ring is clearly recognised and any eccentricity is immediately pointed out.
Look at the following picture. This is the quality of the image seen through the device.

Look at the video of the device in use in a mill.

The device can be ordered from the company

2/36, Sri Ambal Nagar, Vilankurichy, Coimbatore- 641 035
0091 98430 35014     email:

February 16, 2018 / apexprecitech

P 3-1 டாப் ஆர்ம் எவ்வாறு வேலை செய்கிறது ? அதன் எளிமையின் ரகசியம் என்ன ?

இருபதாண்டுகளுக்கும்  மேலாக Rieter மற்றும் LMW போன்ற நிறுவனங்களால் தயாரிக்கப்படும் நூற்பு இயந்திரங்களில்   காற்றழுத்த விசையால் இயங்கும் P  3- 1 டாப் ஆர்ம்கள் மட்டுமே பயன்படுத்தப் படுகின்றன.

அவைகளின் எளிமை , சிக்கனம் மற்றும் தொழில் நுட்ப நேர்த்தி போன்றவற்றால் அவை இன்று வரை அப்படியே மாற்றப்படாமல் உள்ளன. இந்த டாப் ஆர்ம்களின் அமைப்பை தொடர்ந்து ஆராய்ந்து வந்த காரணத்தால் இதன் பல சிறப்பம்சங்கள்  விளங்க ஆரம்பித்தன. அவற்றை மாணவர்களோடும், ஆராய்ச்சியாளர்களோடும், தொழில் நுட்ப வல்லுனர்களோடும் பகிர்ந்து கொள்ளுகிறோம் .

டிராப்ட்டிங் விசைத்திறன் ஒரு சிறிய விளக்கம் 

ஒரு டாப்  ஆர்ம் டிராஃப்டிங் செய்யவதற்கான விசையை அளிப்பதற்கான கருவி. சாதாரணமாக ஒரு டாப் ஆர்மில் 50 கிலோ வரை விசை கொடுக்கும் வல்லமை இருக்கும். ஸபின்னிங்கில் முதல் உருளையில் (roller ) 16 கிலோவும், இரண்டாவது உருளையில் 12 கிலோவும், மூன்றாவது உருளையில்  16 கிலோவும் தேவை. (கூட்டினால் 44 கிலோ ). ஒரு உருளையில் 16 கிலோ என்றால் (படம் 1 பார்க்க ) அதன் இரண்டு புறங்களிலும் விசை சரிபாதியாக, அதாவது  8 கிலோவாக இருக்கும். இது அனைத்து உருளைகளுக்கும் பொருந்தும்.


P 3-1 டாப் ஆர்ம்கள் தனித்தனியாக ஒவ்வொரு உருளைக்கும் விசை அளிப்பதில்லை. அனைத்து டாப் ஆரம்களுக்கும் ஒரே நேரத்தில் காற்று புகுத்திய ரப்பர் குழாயின் குழைவுத்தன்மையின் (elasticity ) உதவியால் இந்தப் பெருவேலையை எளிதாக செய்கின்றன.

 p3-1-top-arm revised

மேலே டாப் ஆர்ம்களின் பிடி மைய  தண்டின் (arm bar ) குறுக்கு வெட்டுத் தோற்றம் உள்ளது. இதில் ” ப ” வடிவில் இருக்கும் நீளமான இரும்புத் தகடு (ledge) தான் காற்றுக் குழாயில் இருந்து விசையை டாப் ஆர்முக்கு கடத்துகிறது . எப்படி வெறும் 2.2 Kg / sq . cm அழுத்தமுள்ள காற்றால் , அதுவும் 32 மி மீட்டர் குறுக்களவே  கொண்ட அறுகோணக் குழாயில் ஒரு ஆர்முக்கு 50 கிலோ வீதம் 12 ஆரம்களுக்கு 600 கிலோ விசை அளிக்க முடிகிறது ? இதை சாத்தியமாக ஆக்கி இருக்கிறது இந்த டாப் ஆர்ம் .

இதன் காரணத்தினாலேயே , இதை ஒரு  சிறந்த வடிவமைப்புகளுள் ஒன்றாக நாம் வைக்க வேண்டும். ஆனால் இது இந்த ஆர்மின் பல சிறப்புகளில் ஒன்று மட்டுமே. இந்த ledge தகடு 135 மில்லி மீட்டர் நீளமும் 18 மில்லி மீட்டர் அகலமும் கொண்டது. இந்த குறுக்கு பரப்பான 135 X 18 = 2430  சதுர மில்லி மீட்டர் ( அல்லது 24.3 சதுர செ மீ ) பரப்பளவில் தான் ரப்பார் குழாய் தன விசையை செலுத்துகிறது.

காற்றின் விசை = 2.2 கிலோ / sq .cm

ledge பரப்பு         =  24.3 sq .cm

மேற்கண்ட  இரண்டையும் பெருக்கினால் அந்தந்த டாப் ஆர்ம்களில் கிடைக்கும் விசை கிடைத்து விடும். அதாவது 2.2 X  24.3 = 53.46 கிலோ. இப்பொழுது நாம் எப்படி ஏறக்குறைய 50 கிலோ டாப் ஆர்மில் கிடைக்கிறது என்று தெரிந்து கொண்டோம்.

ஒருபுறம் ரப்பர் குழாயின் விசை . இன்னொரு புறம் மூன்று உருளைகளைத் தங்கி நிற்கும் டாப் ஆர்ம். இவை இரண்டுக்கும் இடையே தூதன் போல வேலை செய்வது ஒரு நெம்புகோல் (lever ). டாப் ஆர்மை நாம் அமுக்கும் போது , இந்த நெம்புகோல் மேல் நோக்கி தூக்கப் படுகிறது. அப்போது அது ரப்பர் குழாய் மேலிருக்கும் “ப ” வடிவ தகட்டை (ledge ) கீழ் நோக்கி அமுக்குகிறது. காற்று அடைக்கப் பட்ட குழாயை ledge எதிர்க்கையில் , குழாயின் முழு விசையும் நெம்புகோல் வழியாக டாப் ஆர்முக்கு செல்லுகிறது.

இத்துடன் வடிவமைப்பின் நேர்த்தி நிற்கவில்லை. டாப் ஆர்மில் கிடைத்த விசையை மூன்று உருளைகளுக்கும் பிரித்தளிக்கும் விதம் மிக்க நயம் மிகுந்தது. வெறும் இரண்டு சிறு கம்பித் துண்டுகளைக் (horizontal dowel  pins ) கொண்டு சரியான விகிதத்தில் ஒவ்வொரு உருளைக்கும் விசை செல்கிறது. மொத்த  விசையில் 1/3 பகுதி விசை பின் உருளைக்கும் , மீதி முதல் இரண்டு உருளைகளுக்கும் சேர்த்தும் அளிப்பது முதல் படி. இரண்டாவதாக , முதல் இரண்டு உருளைகளுக்கும் இடையே 60:40 விகிதத்தில் விசையை பிரிக்கிறார்கள். இதில் விகிதம் முன்பின் சரி செய்யவும்  அருகருகே உள்ள துளைகளில் கம்பியை மாற்றி செருகி அமைக்கலாம்.

ஆயிரக்கணக்கான ஸ்பிரிங்குகளையும் , இணைக்கும் போல்ட் , நட்டுகள், மற்றும் சிறு உதிரி பாகங்கள் இல்லாமல்  , வடிவமைப்பு நேர்த்தியின் இலக்கணமாக   P 3-1 டாப் ஆர்ம் விளங்குகிறது.

பயன் பாடு உத்திகள் 

இதில் காலப் போக்கில் ரப்பர் குழாய் தன விசையை இழந்து  கட்டையாய் மாறும் போது கவனித்து மாற்றுதல் முக்கியம். ledge  வளைந்து போதலாலும் விசை குறையலாம். புதிதாக மாற்றுதல் நலம். டாப் ஆர்ம் மற்றும் ஆர்ம் பார்களின் இணைப்பு போல்ட்டுகளை சரியாக வைத்தல், போன்ற எளிய உத்திகளாலேயே இந்த டாப் ஆரம் நன்கு வேலை செய்யும்.

புதிதாக காம்பேக்ட் ஸபின்னிங் உபகரணங்கள் மாற்றம் செய்த மெஷின்களில் (conversion ), முதல் உருளைக்கு 21 கிலோ வரை தேவைப்படும். அதனால் இந்த மெஷின்களில் புதிய ரப்பர் குழாய் மாற்றம் செய்து காற்றழுத்தம் அளக்கும் அதிகரித்துப் பார்க்கலாம். . அப்படியும் 21 கிலோ கிடைக்கவில்லை என்றால் , ஆர்ம் பார் பெண்டு இருந்தால் சரி செய்ய வேண்டும். இதிலும் கிடைக்கவில்லை என்றால் எளிய உபாயமாக Apex நிறுவனத்தின் load  enhancing spacer டாப் ஆர்மின் லீவரில் மேல் பொருத்தி காற்றின் விசையை அதிகரிக்காமலேயே எளிதாய் 4 கிலோ வரை விசை அதிகரிக்க செய்யலாம்.


ஸபின்னிங் பிட்டர்கள் அனைவருக்கும் இந்த டாப் ஆரம் பற்றி விளக்கம் அளிக்கப் பட வேண்டும். உபரியாக சில டாப் ஆர்ம்கள் வைத்திருந்து பழுதானவற்றை நீக்கி அவற்றை ஆய்வுக்கு உட்படுத்தி , பிரச்சினைகளை ஆராய்தல் நலம்.

ரப்பர் குழாய் பொத்தல் விழுந்து காற்று பீறிட்டால் பிரச்சினையே. இதை கண்டு பிடித்தல் சிரமமும் கூட. எந்நேரமும் டாப் ஆர்ம் லோடு அளக்கும் கருவி மில்லில் இருப்பது நலம். அதை குறிப்பிட்ட கால இடைவெளியில் கெலிப்ரேஷன் செய்து வைக்கவும் நூற்பு இயந்திர பிட்டர்களுக்கு அறிவுறுத்தப் பட வேண்டும்.
செய்யக் கூடாதவை 
1. எக்காலத்திலும் , P 3-1 டாப் ஆர்மை சாதாரண ஸ்பிரிங்கு விசைக்கு மாற்றும் தவறை நூற்பு வல்லுநர்கள் தவிர்க்க வேண்டும். இதன் மூலம் ஆரம் பார் வளைந்து கொடுக்கிறது. இந்த வளையும் விசையையே நாம் தவறாக டாப் ஆர்மின் விசை ஏறுகிறது என நினைக்கிறோம். இதனால் டாப் ஆர்ம் ஸ்டாண்டு வலுவிழந்து உடையும். டாப் ஆர்மை உயர்த்தியும் தாழ்த்தியும் இயக்க ஆட்கள் பெரும் சிரமப்  படுவார்கள். ஒரு கட்டத்தில் முழு டிராப்டிங் சேதமாகி , நல்ல மெஷினை ,  வேறு வழியின்றி   விற்க முடிவெடுக்கவும் நேரலாம்.
2. அதிக விட்டம் கொண்ட சிறு உலோக உருளையை (metal  bush ) உள்ளே போட்டு விசையை அதிகமாக்கிட ஒரு வழியை நூற்பு மில்கள் சிலர் செய்கின்றனர். இதில் நன்மையை விட தொந்தரவுகள் அதிகம். உருளையைத் தாங்கும் கம்பித் துளை லூஸாகி விட வாய்ப்பு, புதிய ரப்பர் குழாய் மாற்றுகையில் அழுத்துதல்  கடினமாகி விடுதல் போன்ற பிரச்சினைகள் வரலாம்.
February 16, 2018 / apexprecitech


In the Ring Spinning Industry , more than 75 % of the Ring Frames are fitted with the P 3-1 Top Arm. Two of the world’s biggest manufacturers of Ring Spinning frames employ these top arms in their frames. This top arm was introduced more than 25 years ago and is still being produced in the same form without any modifications. This is a great distinction for an accessory to survive so long in this era of great change and advancement.

While analyzing its success, what strikes us is its simplicity. To explain this , one has to compare this pneumatically powered top arm to a conventional spring loaded top arm. In a typical 1000 spindle ring spinning frame, for 500 spring loaded top arm, there will be minimum of 1500 helical springs, and as much numbers of fasteners to secure them will be needed not to mention the loose spares like spacers, washers etc. In total contrast, this top arm, named P 3-1 , has NONE of the above. Its body is just a hollow  structural element shaped like a rectangular channel fitted with holders for the top rollers. See fig 1. The series of arm bars, running through from end to end serve as the pressurizing elements. The arm bar is essentially a hollow hexagonal pipe with a simple rubber hose running through. These hoses are pressurized with compressed air usually upto 2.2 Kg/

Now you understand that this top arm is saving the manufacturers and spinners crores of rupees every year in springs and accessories alone.

p3-1-top-arm revised

You might want me to go into the working principle in detail. The figure above shows the cross section of the arm bar. the inner rubber tube is pressurizing a small channel like metal section. This is the ledge. The ledge has a length of 13.5 cm and a width of 1.8 cm. The area of this ledge is 13.5 x 1.8 = 24.3 It is this area that is subject to pressurization by the hose. Taking the air pressure in the hose to be 2.2 Kg/,

the load exerted on the ledge =   area of the ledge  x air pressure in the hose

                                          = 24.3 x 2.2

                                         =  53,46 Kg.

In a typical spinning situation, the front roller load is about 16 kg, middle roller load is 12 kg and third roller is 16 kilograms. Cumulatively 46 kilograms are need for  one single top arm. The load generated is well within that value.

This is the load exerted on ONE ledge only. There are typically 12 ledges in one arm bar corresponding to twelve top arms. Totally one arm bar is responsible for 636 kilogram of load. This is a phenomenal amount of load considering the size of equipment. Totally for 42 arm bars in a 1008 spindle ring frame, the load generated in the arm bar is 42 x 636= 26,712 kilograms. Achieving twenty six tons of load using static pneumatic pressure is a major achievement and is ONE of the primary reasons for the superiority and simplicity of this top arm.

A lever transmits the load on the ledge to the top arm. The lever is supported on a pivot and while one end sits on the groove side of the ledge the other side is pressed down. The top pressing arm engages with the curvature of the lever and as a result, the load is transmitted to the top arm. This load is further transmitted to the three top rollers. The distribution of the load to the individual top rollers is effected by an ingenious pivot mechanism.

Look at this picture. There are three holes in in a line. The saddle holder at the bottom also has three corresponding holes. A pin runs through these two components once they are aligned. While aligning they can be variably aligned such as  1-1, 1-2, 1-3 etc. The pin also can be inserted in any of the holes for varying the distribution ratio of loads. If the total load of the top arm is 48 kilograms, the first distribution divides the loads such that the front and second rollers together get 64 % rd of the total load i.e  28 kilos while the back roller gets the remaining 36 %  i.e 48x 1/3 = 16 kilo.

The front and second roller   saddle further divide the load in the ratio of 57 : 43. The load value will be 16 kilo for the first roller and 12 kilo for the second roller. In this manner , the final load values of 16, 12 , 16 for the respective rollers is achieved. When different holes and positions are chosen this ratio will vary. A general rule to remember is that the more one hole is towards the operator, the front portion will get more load and vice versa.

The advantages of this Top Arm:

1. The loads of top arms can be adjusted centrally.
2. The increase or decrease of the top roller diameters does not affect the load values since the air pressure and the acting area inside the hose remains constant. This is a super useful feature and such a relief to the spinning technician.

3. The only changeable settings for this top arm is the saddle distances and the pin positions, once these are standardized, there is no more maintenance in these arms.

What should a Spinner Do to maintain these Top Arms Well ?

1. Ensure the hose is in good condition. Change of the hose after its life span is a good practice. The hose loses its elasticity after prolonged use and the ledge no more engages with the hose properly and load drops will occur.
2. Also , the ledge should be checked while changing the hose, if they are distorted , they also need to be changed.
3. Ruptured hoses are a big nuisance and they are undetectable in the noisy shopfloor.. Only a good Top Arm Load Gauge will detect drop in loads. Have our Apex Top Roller Load Gauges handy and keep it in top condition with periodic recalibrations.

4. For top arms converted with Compact Spinning kits, the load requirement in the front roller will be in the range of 20-21 kilograms. Even with increase of air pressure, the average top arm CAN NOT supply that load. Apex has developed a small external spacer which when fitted to the pressing arm of the top arm, instantly increases loads by  4 kilograms thus proving ideal for compact spinning conversions. see picture



What one should not do

1. Never, Never , Never convert the top arm to mechanical spring loads. This drafting structure is only suitable for pneumatic force where the force acts on all sides of the arm bar. That is why P 3-1 drafting has four top arms per stand instead of three as in the case of other top arms. In the case of the mechanically converted systems, the springs act downwards alone thereby creating a upward reaction of the arm bar pipe. This phenomenon will mimic like an increase in top arm load but actually it is killing your whole drafting system. The roller stand can break anytime and your operator will struggle enormously to lift and press the arms. The reconversion to original setting will be again financially straining. We know of many mills who have thought it best to dispose off these Ring Frames itself instead of further spending on the drafting. Please use extreme discretion when tempted to go in these routes. Use our counsel if possible by emailing or telephoning.

2. The cylindrical bush which engages with the pressing arm, is replaced with some extra sized rollers for the purpose of extracting extra load. This is a questionable practice since the removal of the pins and re assembling makes them loose and unfit for further use. Plus, when new hose is replaced, the operator will find it hard to press arm. Apex Precitech has developed a simple externally mountable spacer which instantly increases load.

March 12, 2016 / apexprecitech

Apex Load Enhancing Spacer for P3-1 Top Arm

Ever thought of a simplest of a solution for some really baffling and complicated job ? Well, here it is.

Apex Precitech was committed to improve the pneumatically loaded P 3-1 top loading arm. Apex Precitech published an article  <here>  regarding the full construction of the P 3-1 top arm.  This top arm is the maximum populated one in the international level and its simplicity and ease of operation still overrule its rejection. The problem areas in these top arms are reduction of loads over period time and  inability to raise the loads despite increase of air pressure.

With the advent of compact spinning and with many frames getting converted to handle compact drafts, the spinners are facing a crisis of sorts with inadequacy of loads in these top arms. It is to be noted that compact front rollers are also loaded from the top arm. The load starved top arm is powerless to handle this issue.

Spring load conversion of the top arm failed miserably and another viable solution was badly needed.

The Solution

We  always were intrigued by the enhancement of loads with the slight lifting of the pressure lever of the top arm. In fact the spinning siders place a small cotton wad and then press the lever thereby creating a gap between the anvil and the lever.  This lifting was never uniform and created excess loads which led to wear of the bottom roll bearings and the rubber cots.

We analyzed this further and found that the L shaped loading fulcrum of the top arm has a curvature inside which the idling roller of of the top arm sits upon the final pressing of the lever. This is where the inadequacy of engagement takes place once the pressure hose inside the arm bar even slightly loses its elasticity. The resultant ‘play’ developed leads to lowered engagement force experienced at the bottom roller.

When we insert a spacer into the pressure lever as shown, the fulcrum is noaded at the curvature but at the preceding slope which immediately tightens the fulcrum against the pressure hose. The loads are now consistent and steady. This gives life into even discarded hoses saving money and  time. Many anxious spinners who once thoughts of replacing the frame itself due to this, can be relieved now.

The Product ” Apex Load Enhancing Spacer”

The spacer is shown here. It has five components. The U shaped housing, the metal washer which prevents from biting of the sharp bottom edge of the pressure lever, a top cover and a screw. The nut is embedded in the housing itself.

spacerspacer with washer

spacer final

Once this assembly is fastened onto the Top Arm , the results are sure and consistent. Our 4.5 mm spacer has uniformly created a 4.5 Kilogram increase in the fron roller load. This further means an additional 4.5 kilo load increase in the back roller and  1.5 kilo increase in the middle roller load. A total of 10.5 kilogram per top arm!!!

Now , the spinner has the joyous problem of plenty. As a 6 to 17 kilogram is enough for the normal spinning process, he can now reduce the air pressure !!!

For compact spinning processes, the front roller load needs 21 to 22 kilograms. This spacer is capable of generating that load easily. This is a very low priced product and a boon to all spinners. I appeal them to use this to increse productivity, increase quality, decrease down time and increase smiles all around.

The following video demonstrates the spacer


March 12, 2016 / apexprecitech


For long the saddle setting in the P 3-1 top arm continued to be laborious. The handheld setting gauge of yore allowed for a limited turnout due to the holding of the gauge in one hand and snapping it on to the saddle with the other.  usually a team of five technical  persons do this job of removing the saddle loosening the saddle screws, snapping into the setting gauge, tightening and removing and reassembly back  into the top arm. Setting the field length is another job using vernier calipers. Usually the job takes 5 to 6 hours to to set a 1000 spindle ring spinning frame.  The machine is stopped during the period.

The New Solution 

Apex has introduced a portable table mounted setting device designed to take on all the above jobs  with much ease and accomplishes them at one third of the labour and time.



The above picture shows how the machine is constructed. The salient features are

  1.  Vernier caliper fitted slidable, lockable saddle heads. Two vernier scales take care of the front (finisher draft zone)  and back (break draft zone).
  2. Wheels fitted at both ends enable smooth sliding of the heads varying the distance which can be locked at any desired point with an accuracy of 0.01 mm.
  3. This device empoys the slip on fitting of the saddle shafts into the saddle instead of snap fitting . The present method takes care of the fingers of the operators. Earlier, the snapping makes the fingers tired and every chance was there in getting tender skin getting squeezed into the saddle spaces.
  4. The rigid fitting of the heavy device means , the opertaor does not handle the gauge and concentrates only on the saddle.
  5. Usually a team of two people can handle this job at a time. One for removing and the other for unscrewing , setting and tightening the saddle.
  6. The machine need not be stopped as the team targets one top arm at a time. The siders can be called in once a dozen top arms are set. (one arm bar length).

The following video will further demonstrate the usefulness of the device.


It is a labour saving, time saving and accurate device which is necessary for quality conscious and cost conscious spinning mills.

January 28, 2016 / apexprecitech

Apex Top Arm Load Gauge now totally “compact spinning”compatible

The Apex Top Arm Load Gauge has got better. Recently we added a new feature by which our gauge has become the first to measure the loads in the compacting rollers of compact spinning drafting.

We experimented with Suessen Elite compact spinning drafting. So far , we had only given arbors to measure the second roller which is actually held in the saddle. But, this present arbor is in fact, as assembly of a normal top roller and the plastic casing from the original compact dtafting. See the picture below.

This assembly was held in the arbor of a Suessen Elite drafting, and the arm pressed to exert load. We got the loads from 5 to 6 kilograms as anticipated by us. This was when the front roller load was about 25 kilograms.  See the below picture.


September 24, 2012 / apexprecitech


A Study on the power consumed in the drafting apparatus of a Ring Spinning Frame using pneumatic arm loading.


Prepared by J Venkatasubramanian, Research Engineer, Apex Precitech., Coimbatore

The objective is to find the load consumed for excess/ deficit loading of the bottom rollers by the loading arm of a pneumatically loaded drafting system. Another objective is to calculate the actual cost of such an increase for a mill.

The Rieter/ Lakshmi Rieter type of drafting with their current P 3-1 top arm is taken for analysis. Assumed is that one complete ring frame has 1008 spindles and the mill has 25,000 spindles.

The standard motor capacity is 45 KW and the percentage load consumed in the drafting is taken as 25 % i.e., 11.25 KW. (The remaining 75% will be towards  the spindle drive)

It is known from studies on P 3-1 top arms that the loading pattern from front to back roller of the drafting is as follows

Front- 16 kg       Middle- 12 Kg     Back 16 Kg.

For an optimum performance in cotton spinning conditions technicians keep these values. Also, at the recommended air pressure of 1.6 bar, only these values are recorded using Apex Top Arm Load Gauges. This means  a total load of 44 Kg for one top arm.


Total number of top arms – 504

Load per arm – 44 Kg

Total drafting Load – 44 X 504 =  22,176 Kg

Power consumed for one full machine = 11,000 watts

(11,000 watts are consumed by an exertion of 22,176 Kg.)

Therefore , for one Kg , the load consumed is   = 11,250 / 22,176 = 0.507 watts

The P 3-1 top arm is centrally pneumatically loaded and the increase of air pressure fed into the machine will result in the increase of top arm loads in all the top arms. Another feature in the P3-1 top arm is that the increase of one kilogram of the front roller in the standard pin setting of the P3-1 top arm will result increase in other rollers too. The ratio of inmcrease  (front: middle: back ) is 1 : 0.5 : 1

Hence, if we assume the front roller is loaded in excess of 1 kg (over the normal of 16 Kg) the loading pattern will be like 17 :12.5 : 17. The increase in load will be 2.5 Kg total. For 504 top arms the excess load applied  = 2.5X 504 = 1,260.00 Kilograms.

Since   we arrived at the power consumed per kilo as 0.507 watts, the total power for 1,260 Kilos of excess loading will be

= 1,260 X 0.507 = 638.82 watts.

For 24 hour running of the machine, the power consumed will be = 24 x 638.82

= 15,331.68 watts= 15.33 KW

Converting into energy units for  24 hour running consumed will be 15.33  kilowatt hour (units)

Calculating for 25000 spindles (25 machines)  the excess energy consumed per day  will work out to be            = 25 x 15.33 = 383.25 units

For 365 days the calculation will be = 1,39,886.25 units

Considering Rs 7.00 as an average cost of a unit as in Tamil Nadu the Rupee equivalent of the excess energy consumed is                                             = 1,30,886.25 x 7

=  9,79,203.75 Rupees per annum.


Since this cost is for unit increase of load , i.e., by 1 kilogram, for any further increase , the cost can be got by multiplying by the factor. For example , for 1.5 kilogram increase, the cost can be simply  1.5 multiplied by 9,79,203.75.

This can be used as an empirical method to calculate the costs for any increase or decrease of air pressure.

March 6, 2012 / apexprecitech

Lakshmi Rieter P 3-1 Top Arm Loading Details

The Rieter P 3-1 is easily the largest populated spinning top arm in the world today. I had already written about this top arm in a separate post. see the article <here>

This is a pneumatically loaded top arm with the benefit that even upon regrinding of the top roller, the load applied remains the same. The load is transmitted to the top arm via a fulcrum loading point.

From the arm the load is individually transmitted via an arrangement of loading pins. This is simply placement of the pivot positions of the front and middle rollers in one set and the back roller alone as another set. The pin positions can be in three positions and the position will decide the intensity of load in that region.

For example, if the pin is inserted in the last pair of holes, the loading will be more on the back roller than the front.

The figure will explain the construction. The points ‘m’ and ‘n ‘ determine the load sharing ratio between the front middle and back rollers.


The top arm load of P 3- 1 is front 16  Kg, middle- 12 Kg, back- 16 Kg. The hexagonal arm bar houses a lengthy hose which exert load on the top arm on a bent lever. The advantages are that even after regrinding of the rubber roller (cots) the top arm load does not diminish.  This is due to  the fact that the area of the hose and the pressure remain constant and as a result, the load is also constant.

Despite its many advantages, the top arm is found to give erratic load readings because of following reasons.

1. Weakening of the hose material.

2. Leakage in the air line/ hose

3. Play developing in the key joints where load is transmitted.

I believe you liked this article. If you have any objections/ comments please record by clicking  <here >

To download the customer list of Apex Precitech, click here.

To down load the service manual of this gauge click here

To view all the products of Apex Precitech, in the official website, Click here

To leave your comment or feedback on this product, please click here

Our contact address:

APEX PRECITECH, No; 2/36  , Sri Ambal Nagar, Vilankurichy, Coimbatore- 641 035, India ; Tel: 0091 422 2667026  , 0091 98430 35014   email: